In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography.

نویسندگان

  • Jun Zhang
  • Zhongping Chen
چکیده

A swept source based Fourier domain optical Doppler tomography (FDODT) system was developed. The technique is based on a phase-resolved method where phase information was retrieved from the reconstructed complex fringe signals. The aliasing effects and artifacts caused by lateral scanning and sample movement were removed with a signal processing technique. The standard deviation of the phase shift of the system was reduced from 49 to 1.8 degrees with the signal processing method employed. Structural, Doppler and Doppler variance images of fluid flow through glass channels were quantified, and blood flow through vessels of chick chorioallantoic membrane (CAM) was demonstrated in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT

Doppler OCT provides depth-resolved information on flow in biological tissues. In this article, we demonstrate ultrahigh speed swept source/Fourier domain OCT for visualization and quantitative assessment of retinal blood flow. Using swept laser technology, the system operated in the 1050-nm wavelength range at a high axial scan rate of 200 kHz. The rapid imaging speed not only enables volumetr...

متن کامل

Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography

Doppler OCT is a functional extension of OCT that provides information on flow in biological tissues. We present a novel approach for total retinal blood flow assessment using ultrahigh speed Doppler OCT. A swept source / Fourier domain OCT system at 1050 nm was used for 3D imaging of the human retina. The high axial scan rate of 200 kHz allowed measuring the high flow velocities in the central...

متن کامل

Speckle variance detection of microvasculature using swept-source optical coherence tomography.

We report on imaging of microcirculation by calculating the speckle variance of optical coherence tomography (OCT) structural images acquired using a Fourier domain mode-locked swept-wavelength laser. The algorithm calculates interframe speckle variance in two-dimensional and three-dimensional OCT data sets and shows little dependence to the Doppler angle ranging from 75 degrees to 90 degrees ....

متن کامل

Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems

The traditional phase-resolved Doppler method demonstrates great success for in-vivo imaging of blood flow and blood vessels. However, the phase-resolved method always requires high phase stability of the system. In phase instable situations, the performance of the phase-resolved methods will be degraded. We propose a modified Doppler variance algorithm that is based on the intensity or amplitu...

متن کامل

Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm Citation

The performance and imaging characteristics of ultrahigh speed ophthalmic optical coherence tomography (OCT) are investigated. In vivo imaging results are obtained at 850nm and 1050nm using different configurations of spectral and swept source / Fourier domain OCT. A spectral / Fourier domain instrument using a high speed CMOS linescan camera with SLD light source centered at 850nm achieves spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 13 19  شماره 

صفحات  -

تاریخ انتشار 2005